Controlling General Polynomial Networks
نویسندگان
چکیده
منابع مشابه
Controlling General Polynomial Networks
We consider networks of massive particles connected by non-linear springs. Some particles interact with heat baths at different temperatures, which are modeled as stochastic driving forces. The structure of the network is arbitrary, but the motion of each particle is 1D. For polynomial interactions, we give sufficient conditions for Hörmander’s “bracket condition” to hold, which implies the uni...
متن کاملA General Polynomial Sieve
An important component of the index calculus methods for finding discrete logarithms is the acquisition of smooth polynomial relations. Gordon and McCurley (1992) developed a sieve to aid in finding smooth Coppersmith polynomials for use in the index calculus method. We discuss their approach and some of the difficulties they found with their sieve. We present a new sieving method that can be a...
متن کاملGeneral Polynomial Time Decomposition Algorithms
We present a general decomposition algorithm that is uniformly applicable to every (suitably normalized) instance of Convex Quadratic Optimization and efficiently approaches an optimal solution. The number of iterations required to be within ε of optimality grows linearly with 1/ε and quadratically with the number m of variables. The working set selection can be performed in polynomial time. If...
متن کاملRidge polynomial networks
This paper presents a polynomial connectionist network called ridge polynomial network (RPN) that can uniformly approximate any continuous function on a compact set in multidimensional input space R (d), with arbitrary degree of accuracy. This network provides a more efficient and regular architecture compared to ordinary higher-order feedforward networks while maintaining their fast learning p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2014
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-014-1966-4